Preliminary Communication

Synthesis, NMR spectra and X-ray crystal structure of the trinuclear complex $\left.\left[\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Carlo A. Ghilardi, Stefano Midollini, Annabella Orlandini, Giancarlo Scapacci and Alberto Vacca

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR, Via J. Nardi, 39-50132 Firenze (Italy)
(Received July 7, 1993)

Abstract

The trinuclear hydride platinum complex $\left[\mathrm{CH}_{3} \mathrm{C}\left\{\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right)_{3}\right]$ has been synthesized by oxidative addition of $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{3}$ to $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}^{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \text { and it has been characterized by X-ray diffrac- }}\right.$ tion studies and multinuclear NMR spectroscopy.

Oxidative addition reactions of thiols with lowoxidation state metal complexes can yield thiolato-derivatives. These reactions proceed via hydrido-intermediates, which can sometimes be isolated [1]. Our interest in metal-sulphur clusters prompted us to consider the tripod-like thiol $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{3}$. Indeed the related thiolate $\left\{\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}\right\}^{3-}$ forms a monometal complex only, with the highly charged cation Re^{5+} [2], but otherwise it links three metal centres [3,4]. The oxidative addition of trithiol to low oxidation state transition metal substrates would appear to be a convenient route to metal ion aggregates. We report here the preparation, spectra and the X-ray crystal structure of the triplatinum complex $\left[\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right)_{3}\right]$. It was prepared in high yield, as air-stable, yellow crystals, by treatment of $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ with $\mathrm{CH}_{3} \mathrm{C}^{\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{3} \text {, at room temperature [} 5^{*} \text {]. }}$

$$
\begin{aligned}
& 3\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]+\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{3} \longrightarrow \\
& {\left[\mathrm{CH}_{3} \mathrm{C}\left[\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]+3 \mathrm{PPh}_{3}+3 \mathrm{C}_{2} \mathrm{H}_{4}}
\end{aligned}
$$

The IR spectrum of the solid (Nujol mull) shows bands at 2095 and $2145 \mathrm{~cm}^{-1}$ attributable to $\nu(\mathrm{Pt}-\mathrm{H})$.

The single-crystal X-ray structure determination [7*]

[^0]shows that the structure consists of $\left[\mathrm{CH}_{3} \mathrm{C}_{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{SPtH}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right\}_{3}$] and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent. A perspective view of the complex unit is given in Fig. 1, together with important bond distances and angles.

The three platinum atoms at the vertices of a triangle whose edges range from 3.485(1) to $3.587(1) \AA$ are held together by sulphur thiolate bridges. Alternating metal and sulphur atoms form a six membered ring with a chair configuration and approximate $C_{3 V}$ symmetry. The ring angles at the metals, $96.0(1)-96.9(1)^{\circ}$ are similar to those at the sulphur atoms, 95.5(2)$98.8(1)^{\circ}$. There is no evidence for a direct metal-metal interaction and the compound may be considered as constituted of three square planar platinum(II) moieties. Each platinum metal completes its square planar geometry with a triphenylphosphine and a hydride. The presence of the hydrides, directly detected in the IR and NMR spectra (vide infra), is also implied by the angler in the co-ordination sphere of the metals. Each

Fig. 1. Perspective view of $\left[\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right)_{3}\right]$ pluto drawing. Selected bond distances (\AA) and angles (deg): $\mathrm{Pt}(1) \cdots \mathrm{Pt}(2)$ $3.587(1), \operatorname{Pt}(1) \cdots \operatorname{Pt}(3) 3.485(1), \operatorname{Pt}(2) \cdots \operatorname{Pt}(3) 3.541(1), \operatorname{Pt}(1)-S(1)$ 2.344(4) $\mathrm{Pt}(1)-\mathrm{S}(3) 2.387(5), \mathrm{Pt}(1)-\mathrm{P}(1) 2.240(4), \mathrm{Pt}(2)-\mathrm{S}(1) 2.381(4)$, $\mathrm{Pt}(2)-\mathrm{S}(2) 2.328(2), \mathrm{Pt}(2)-\mathrm{P}(2) 2.230(5), \mathrm{Pt}(3)-\mathrm{S}(2) 2.388(4), \mathrm{Pt}(3)-$ $\mathrm{S}(3)$ 2.323(4), $\mathrm{Pt}(3)-\mathrm{P}(3)$ 2.221(4), $\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{S}(3) 96.5(1), \mathrm{S}(1)-$ $\mathrm{Pt}(1)-\mathrm{P}(1)$ 167.7(2), S(3)-Pt(1)-P(1) 93.8(2), S(1)-Pt(2)-S(2) 96.0(1), $\mathrm{S}(1)-\mathrm{Pt}(2)-\mathrm{P}(2) \quad 97.6(2), \mathrm{S}(2)-\mathrm{Pt}(2)-\mathrm{P}(2)$ 165.9(2), S(2)-Pt(3)-S(3) 96.9(1), $\mathrm{S}(2)-\mathrm{Pt}(3)-\mathrm{P}(3) 96.8(1), \mathrm{S}(3)-\mathrm{Pt}(3)-\mathrm{P}(3)$ 166.2(2), $\mathrm{Pt}(1)-\mathrm{S}(1)-$ $\mathrm{Pt}(2)$ 98.8(1), $\mathrm{Pt}(2)-\mathrm{S}(2)-\mathrm{Pt}(3) 97.3(2), \mathrm{Pt}(1)-\mathrm{S}(3)-\mathrm{Pt}(3) 95.5(2)$.
platinum displays two different $\mathrm{Pt}-\mathrm{S}$ values owing to the trans-influence of the hydride atom the $\mathrm{Pt}-\mathrm{S}$ bonds trans to hydride being significantly larger than those trans to the phosphine (av. 2.385(2) vs. av. 2.331(7) \AA).

The ligating capability of the thiolate has scarcely been investigated. The unique rhenium mononuclear complex [2], and two trinuclear derivatives with a complete X-ray analysis [3,4] have been reported (Ir and Hg).

The iridium compound $\left[\mathrm{Ir}_{3}\left(\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}\right)(\mathrm{CO})_{6}\right]$ shows the same geometry as the platinum complex, it forms a two-dimensional network and displays shorter metal-metal distances $(3.315(1)-3.366(1) \AA$ $£ s$. $3.485(1)-3.587(1) \AA$), with smaller $\mathbf{M}-S-M$ angles (88.8(1)-90.7(1) ${ }^{\circ}$ vs. $95.5(2)-98.8(1)^{\circ}$ [3]. The mercury derivative $\left.\left[\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{SHgCH}_{3}\right)_{3}\right]$ has a completely different structure: the trithiolate acting as a 6 -electron donor, linearly coordinates three $\mathrm{CH}_{3} \mathrm{Hg}$ groups, with metal-metal distances all larger than $3.7 \AA$ [4].

The multinuclear NMR spectrum [8*] $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ solution, room temperature) is consistent with the sym-

Fig. 2. High field undecoupled (A) and $\mathrm{CH}_{2} \mathrm{~S}$-protons homo-decoupled (B) ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{CH}_{3} \mathrm{C}\left\{\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPH}_{3}\right)\right)_{3}\right]$.

TABLE 1. Observed chemical shifts (δ / ppm) and coupling constants (J / Hz)

metrical molecular structure determined by the X-ray analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits signals at δ 7.8-7.0 (m, 45H, $\mathrm{C}_{6} \mathrm{H}_{5}$), 2.39 (m, 6H, $\mathrm{CH}_{2} \mathrm{~S}$), 0.56 (s,

Fig. 3. ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ (A) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (B) NMR spectra of $\left[\mathrm{CH}_{3} \mathrm{C}\left\{\mathrm{CH}_{2}\right.\right.$ $\left.\left.\mathbf{S P t H}\left(\mathrm{PPH}_{3}\right)\right)_{3}\right]$. Simulated signals (i) are in the upper trace of insets.
$3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}$) and $-12.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PtH})$. The high field resonance, which is assigned to the three chemically equivalent hydride hydrogens (Fig. 2, A) is complicated, by four subspectra, due to the spin systems $\mathbf{A A}^{\prime} \mathrm{A}^{\prime \prime} \mathbf{M M}^{\prime} \mathbf{M}^{\prime \prime}, \mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime} \mathbf{M M}^{\prime} \mathbf{M}^{\prime \prime} \mathbf{X}, \mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime} \mathbf{M M}^{\prime} \mathbf{M}^{\prime \prime} \mathbf{X X}^{\prime}$ and $\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime} \mathrm{MM}^{\prime} \mathrm{M}^{\prime \prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime \prime} \quad\left(\mathrm{A}={ }^{1} \mathrm{H}, \quad \mathrm{M}={ }^{31} \mathrm{P}, \quad \mathrm{X}=\right.$ $\left.{ }^{195} \mathrm{Pt}\right)$. Yet further complication stems from the coupling of the hydride hydrogens with the CH_{2} protons of the trithiolate. The hydride resonance, homo-decoupled from the $\mathrm{CH}_{2} \mathrm{~S}$ protons is reported in Fig. 2, B . The couplings of $1075,19.6$ and 1.9 Hz , which appear in Fig. 2, B are ${ }^{1} J_{\mathrm{PtH}},{ }^{2} J_{\mathrm{PH}}$, and ${ }^{4} J_{\mathrm{PH}}$, respectively. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ spectra might be less complicated because of the smaller spin systems, even if different isotopomers are present. The analysis of these spectra has been attempted using a new computer program to best fit the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ experimental multiplets simultaneously. Preliminary results are listed in Table 1 and the experimental and calculated multiplets are shown in Fig. 3.

A complete analysis of the spectra is in progress, and the detailed results will be published elsewhere.

Acknowledgment

This work has been partially supported by the Progetto Finalizzato Chimica Fine, CNR, Roma. We are grateful to Mr. F. Cecconi and P. Innocenti for technical assistance.

References and notes

1 T.B. Rauchfuss and D.M. Roundhill, J. Am. Chem. Soc., 97 (1975) 3386; F. Cecconi, P. Innocenti, S. Midollini, S. Moneti, A. Vacca and J.A. Ramirez, J. Chem. Soc., Dalton Trans., (1991) 1129.

2 P.J. Blower, J.R. Dilworth, J.P. Hutchinson, T. Nicholson, J. Zubieta, J. Chem. Soc., Dalton Trans., (1986) 1339.
3 A. Maisonnat, J. Devillers and R. Poilblanc, Inorg. Chem., 26 (1987) 1502.

4 C.A. Ghilardi, S. Midollini, A. Orlandini and A. Vacca, J. Chem. Soc., Dalton Trans., in press.
5 The compound $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](2.23 \mathrm{~g}, 3 \mathrm{mmol})$ in THF (20 cm^{3}) was added, at room temperature to a solution of $\left.\mathrm{CH}_{3} \mathrm{C}^{\left(C_{B}\right.} \mathrm{SH}_{2}\right)_{3}[6]\left(0.145 \mathrm{~cm}^{3}, 1 \mathrm{mmol}\right)$ in the same solvent (20 cm^{3}). n -Butanol ($30 \mathrm{~cm}^{3}$) was added to the resultant yellow solution, and the solvent was evaporated until yellow crystals precipitated. These were filtered off, washed with n-butanol, then with hexane and dried in a current of nitrogen ($1.15 \mathrm{~g}, 75 \%$). (Found: $\mathrm{C}, 46.15 ; \mathrm{H}, 3.85 ; \mathrm{S}, 6.10 . \mathrm{C}_{59} \mathrm{H}_{57} \mathrm{P}_{3} \mathrm{Pt}_{3} \mathrm{~S}_{3}$ requires $\mathrm{C}, 46.00 ; \mathrm{H}$, 3.73; S. 6.24%). Crystal of composition $\left[\mathrm{CH}_{3} \mathrm{C}^{\left.\left(\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right)_{3}\right]}\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, suitable for X-ray analysis were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-butanol.
6 C. Kolomyjec, J. Whelan and B. Bosnich, Inorg. Chem., 22 (1983) 2343.

7 Crystallographic data for $\left[\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right)_{3}\right]: \mathrm{C}_{60} \mathrm{H}_{59}$ $\mathrm{Cl}_{2} \mathrm{P}_{3} \mathrm{Pt}_{3} \mathrm{~S}_{3}, \mathrm{M}=1625.43$, triclinic, space group $P \overline{1}, a=3.093(3)$, $b=14.080(6), c=16.289(9) \AA, \alpha=86.93(6), \beta=74.09(4), \gamma=$ $81.45(3)^{\circ}, Z=2, U=2855.5 \AA^{3}, d_{\text {calc }}=1.890 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=0.7107$ \AA A. $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=77.3 \mathrm{~cm}^{-1}, F(000)=1560$, room temperature, Enraf Nonius CAD4 automatic diffractometer, $\omega-2 \theta$ mode with a scan speed of $8.24^{\circ} \mathrm{min}^{-1}$ and a scan width $=0.70+0.35 \tan \theta$, $2.5<\theta<25^{\circ}$, graphite monochromated Mo-K α radiation; structural solution by heavy atom method. 5996 observed, absorption corrected reflections with $I \geqslant 3 \sigma(I)$ used in the full-matrix leastsquares refinement; final values of the R and R_{w} factors, 0.054 and 0.053 respectively. Atomic parameters have been deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.
$8{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}(1 \mathrm{H}),{ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right)$ NMR spectra were recorded on a Bruker ACP-200 spectrometer at $200.13,81.01$ and 42.95 MHz respectively. Chemical shifts are relative to internal TMS, external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ and external $\mathrm{Na}_{2}\left[\mathrm{PtCl}_{6}\right]$ respectively, with down-field values reported as positive.

[^0]: Correspondence to: Dr. S. Midollini.

 * Reference number with asterisk indicates a note in the list of references.

